
Designing the Terrain System of

Flight Simulator: Representing the

Earth
Lionel Fuentes – Technical Director – Asobo Studio

● Since 2002 in Bordeaux, France

● ~250 people

● 2019: A Plague Tale : Innocence

● 2020: Microsoft Flight Simulator

Who are we?

Agenda

● Introduction

● Terrain system architecture

● Flexibility

● Scalability

Problem statement

● Build the best possible 3D representation of the Earth

● Take off and land to and from every place on Earth
● With a particular emphasis on airports and airfields

● Match the real world as much as possible

Available resources

● Bing Maps data

● OpenStreetMap data, other datasets

● Microsoft Azure
● Compute
● Storage
● Streaming

● Original Flight Simulator X code and assets
● Airports rendering code

● Artists

Data types

TIN:

● Triangulated

Irregular Network

● Issues from

photogrammetry

Data types

DEM:

● Digital Elevation Map

● Ground height estimate

Data types

Aerial images:

● Photos taken from

satellites or aircraft

Data types

Vector data:

● Points, lines, polygons

● Used to represent:

● Water bodies

● Roads

● Building footprints

● Individual trees

Challenge #1: the world is big

● 510.1 millions km²

● 2+ million cities

● 1.5+ billion buildings

● 2+ petabytes of aerial images

● ~37,000 airports

Challenge #1: the world is big

● Limited manual edition

● Semi-procedural systems

● Lots of storage needed

● Streaming!

Challenge #2: data quality
● Varying levels of quality
● Aerials and DEM precision
● Photogrammetry only available in a limited

number of locations

● Data issues
● Baked-in clouds and shadows
● Missing data
● Inconsistency
● Photos taken at different times of

day/seasons/years, using different cameras…

● Limited control over input data quality

Challenge #3: building a platform

● Support add-ons:
● From professional add-on developers
● From hobbyists/community
● UGC ⇒ No control over artistic authoring

● All kinds of add-ons:
● Airports & airfields
● Points of Interest (PoI)
● DEM
● Traffic enhancement, trees tweaks, boats…

Challenge #4: the world is evolving

● Regular Bing Maps updates
● Should not break existing/published add-ons!

● Live game
● “World Updates”

● Seasons, tides, climate change, cities evolution,

tectonic plates…

Problem statement: v2
A) Make a terrain system that is flexible:
● Accepts different sources of data
● Can be easily modified outside of the main dev team
● Tolerates data updates
● Tolerates wrong, bad quality and/or inconsistent data

B) Make a terrain system that scales:
● Handles lots of data
● Displayed from any altitude
● Scale with hardware: performance and memory
● Scale with available Internet bandwidth

Terrain system architecture

Data layout

● Quadtree

● Mercator projection
● Stretches at the poles

● Not ideal but the vast
majority of available
data uses it

● LoD = number of
subdivision steps

Bing Maps tiles system [1]

Compute
augmentation data

Streaming!

• Aerials
• DEM
• TIN • Trees masks

• Roads
• Buildings footprints
• Water data
• …

Requesting and drawing tiles

● RecurseRequest()
● Recursively request tiles in view frustum
● If not precise enough, increase requested LoD

● Requested LoD depends on:
● Estimated tile screen size
● Estimated available network bandwidth

● Maintain tiles around the camera in memory

● RecurseDraw()
● Draw tiles using the best currently available data
● Tiles can use data from a parent (e.g. aerial texture)

Cutting tiles

● No guarantee for when a tile becomes available ⇒
need to be able to do arbitrary cuts

LoD 20LoD 20

LoD 19

Cutting tiles

LoD 19

Cutting tiles
● Up to 2x2 granularity:
● DEM tiles:
● Choose appropriate pre-computed index buffer

among global list of 15 index buffers

● TIN tiles:
● Generate additional vertices and index buffers
● Choose appropriate pre-computed index buffer

● General case:
● CPU-generated “tile mask” textures
● Pixel shader:

if(mask is black)
discard;

● Works but expensive
4x4 tile mask texture

example

LoD 20

LoD 19

LoD
21

Cutting tiles

● TIN tile example

● Used to hide cracks

● Doesn’t always work with tiles

cutting
● 2x2 case: generate skirts for sub-tiles

● General case: pixel shader discard

⇒ no skirts!

● Skirt size depends on slope to

reduce fill-rate

Tile skirts

A) Make a terrain system that is

flexible

Anatomy of a tile

DEM

TIN

BingAerialTex

VectorData

VegetationMask

WaterMask

…

“Markers” = pieces of data

Tile

Anatomy of a marker
● Each marker is a state machine:
● Marker state:

REQUESTED, PROCESSING, AVAILABLE, FAILED

● Marker internal state (while PROCESSING): e.g:

● Possible values depend on marker type (DEM, WaterMask, etc)

● Example: INIT, DRAW_TO_GPU, COPY_TO_CPU, MERGING, DONE

● At the end of a step, the marker decides on its next step:
● New CPU task (async or main thread)

● Issue GPU draw calls

● Issue a new HTTPS request

● Set state to AVAILABLE or FAILED

Markers dependencies

● Markers can depend on other markers

● Markers request their dependencies

● Reloading system needed for:

● In-game edition of the terrain

● Reacting to new incoming data (airports)

DemMesh v1 DEM v1Tile DEM v1DEMDemMesh

Markers reloading

Steps:

DemMesh v1 DEM v1Tile
v1

Markers reloading

Steps:

1) Mark a marker as dirty

DemMesh v1 DEM v1Tile
v1

DEM v1

Markers reloading

Steps:

1) Mark a marker as dirty

2) Generate reloading marker (new version)

DemMesh v1 DEM v1Tile

DEM v2

v1
DEM v1

Markers reloading

Steps:

1) Mark a marker as dirty

2) Generate reloading marker (new version)

3) Process reloading marker until it is AVAILABLE

DemMesh v1 DEM v1Tile

DEM v2

v1
DEM v1

Markers reloading

Steps:

1) Mark a marker as dirty

2) Generate reloading marker (new version)

3) Process reloading marker until it is AVAILABLE

4) Swap its data and data version with the real marker and delete the reloading marker

DemMesh v1 DEM v1Tile

DEM v2

v1
DEM v1DEM v2

DEM v1

Markers reloading

Steps:

1) Mark a marker as dirty

2) Generate reloading marker (new version)

3) Process reloading marker until it is AVAILABLE

4) Swap its data and data version with the real marker and delete the reloading marker

5) Trigger reloading for markers who expected a different data version in their

dependencies

DemMesh v1 DEM v1Tile

DEM v2

v1
DEM v1DEM v2DemMesh v1

DemMesh v2 DEM v1

“An area can be either one of

TIN or DEM+aerials.”

Markers in practice

DEM+aerials area TIN area

Markers in practice

DemMesh

TIN or
DEM?Tile

TinMeshTex

BingAerialTex

DEM

Markers in practice

“Terrain should feature a water effect in

appropriate areas.”

Markers in practice

DemMesh DEM

TIN or
DEM?Tile

TinMeshTex

BingAerialTex

WaterMask

Markers in practice

“I want to replace specific TIN buildings

with bespoke meshes”

“BTW, water should be flat, obviously.”

Markers in practice

DemMesh DEM

TIN or
DEM?Tile

TinMeshTex

BingAerialTex

WaterMask

Markers in practice

“Trees!”

Markers in practice

VegetationMesh VegetationMask

DemMesh DEM

TIN or
DEM?Tile

TinMeshTex

BingAerialTex

WaterMask

Markers in practice

“We need palm trees in the Bahamas”

Markers in practice

LandClass

VegetationMesh VegetationMask

DemMesh DEM

TIN or
DEM?Tile

TinMeshTex

BingAerialTex

WaterMask

Markers in practice

“Trees don’t fly!”

Markers in practice

LandClass

VegetationMesh VegetationMask

DemMesh DEM

TIN or
DEM?Tile

TinMeshTex

BingAerialTex

WaterMask

Markers in practice

“Trees should be the same color as the aerial images”

Markers in practice

LandClass

VegetationMesh VegetationMask

DemMesh DEM

TIN or
DEM?Tile

TinMeshTex

BingAerialTex

WaterMask

“Some aerial textures are missing or bad quality, we

should generate artificial ones in that case”

Markers in practice

Markers in practice
Blended
Aerial

Synthesized
AerialTex

LandClass

VegetationMesh VegetationMask

DemMesh DEM

TIN or
DEM?Tile

TinMeshTex

BingAerialTex

WaterMask

Other requirements
● “Draw airports on top of the terrain”

● “Grass should be colored according to the aerial”
● “unless the ground color has been edited”

● “Synthesized aerials should be affected by altitude and
slope”

● “Synthesized aerials should reflect the presence of trees”

● “There are no trees in water!”

● …

Actual list of markers (for reference)
DEMDataMarker

DEMDataMarkerHeader

SurfaceCoverageLodRange

TerrainCoverageLodRange

SurfaceModelCoverageMapHeaderMarker

SurfaceModelCoverageMap

TerrainModelCoverageMap

GenIdManagerMarker

TerraformingMarker

WaterDataMarker

VectorHeaderMarker

VectorDataMarker

AdditionVectorHeaderMarker

AdditionVectorDataMarker

GameRender

VegetationMaskHeader

VegetationMask

MeshTex

ColorReferenceHeaderMarker

ColorReferenceMarker

HorizontalBreakReductionMarker

BingAerialHeaderMarker

BingAerialTex

BingTinMeshTex

GPSAerialTex

BingDemMesh

NoShadowCoverageMap

DataAugmentationCoverageMap

VegetationDetailMesh

VegetationMesh

WaterMesh

TinMaskHeaderMarker

TinMaskMarker

SecondaryAerialHeaderMarker

SecondaryAerialMarker

ColorMeanMarker

WaterBitmapHeaderMarker

WaterBitmapMarker

WaterBlurMaskHeader

WaterBlurMask

VegetationCollisionMarker

DataLayerHeaderMarker

DataLayerMarker

DataLayerLC30FullHeaderMarker

DataLayerLC30FullMarker

DataLayerRegionsHeaderMarker

DataLayerRegionsMarker

SynthesisMaskMarker

TINCCHeaderMarker

TINCCMarker

Meta

BlendedAerialMarker

EarthLightsHeaderMarker

EarthLightsMarker

SynthesizedAerialTex

CCActivationMaskMarker

BingSchemaMarker

BingOdvsChunkMarker

BingGridMarker

CLBMarker

WaterAlbedoHeaderMarker

WaterAlbedoMarker

Airports/airfields ground edition
● Requirements:
● Modifiable at runtime (edition)

● Support sloped runways

● Support high-resolution textures (seen from up close)

● Integrate with legacy FSX code
● Legacy code generates and renders flat geometry

● Uses a different subdivision scheme (not exactly a quadtree)!

● Solution:
● Introduce the “GameRender” marker

● Per-tile textures projected on the terrain

GameRender marker
● GameRender marker independent from aerial texture ⇒

resolution not impacted by aerial resolution

● Generated on-the-fly at the beginning of the frame

● Need to be at high quality
● Antialiasing
● Compression
● Detect and avoid storing empty textures

● LoD 15 is read back to CPU
● Collisions
● Trees/grass generation

GameRender marker

●Real-time compression on GPU

●BC2: no compression for alpha channel ⇒ useful for storing flags or enum values

●YCoCg reduces color shift (“gray becomes purple” syndrome)
● Store Y in green channel (6 bits precision)
● Co and Cg have the same precision (5 bits)

●Use visibility queries to detect empty textures in the next frame. If empty, return textures to pool.

R: Roughness
G: Normal X
B: Opacity
A: Normal Y

BC3
compress
& swap

R: Co
G: Y
B: Cg
A: Opacity

MSAA
resolve

R: Normal X
G: Normal Y
B: Roughness
A: Opacity

R: Co
G: Y
B: Cg
A: opacity

Draw
(runways,
taxiways..) R8 Texture array

- Surface type
- Biome ID
- Vegetation
- Flags…

Only for
LoD 15

R: Co
G: Y
B: Cg
A: Material type

BC2
compress
& swap

Terraforming

● Edition needs to be compatible with future DEM updates

⇒ Avoid editing original DEM data

● Edit vector data: points, rectangles and polygons + heights +

influence radius

Original DEM

Edited
vector data

Target DEM

Scaled
distance

field

Draw

Final DEMMerge

Distance field generation

1) Filling the interior

Draw to stencil buffer:

● INC when CW

● DEC when CCW

Project
vertices to
horizontal

axis

0

1

2

3 … 16

17

…

18

19

Draw quad with

stencil test

COMPARE_EQUAL

stencil=0

stencil=1

Distance field generation
2) Filling the borders

● Extrude polygon
● Vertex interpolation
● Stencil test to avoid overriding the interior
● Use BLEND_OP_MIN to handle overlap

Water: rendering
● Drawn using terrain geometry
● Pixel shader branching

● Generate distance field from vector data
(same method)

● Use distance field for
● Blending with aerial
● Water flow and foam (gradient)
● Flattening

● Hand-edited « blur » mask

Water: flattening

● Similar to terraforming

● Challenges:
● TIN: low tessellation level

⇒ Limited vertex displacement
● DEM: flat water VS hill

⇒ some popping when LoD changes
⇒ adjust flattening strength according to
height difference

Water flattening OFF

Water flattening ON

Vector data: flexibility
● Vector data:
● Resolution-independent
● Avoids changing the original data

● Rasterizing vector data to per-tile textures
● Projects to the terrain ⇒ supports arbitrary relief!
● Can generate distance field on GPU for smooth fade-outs

● Using vector data for:
● Drawing on top of aerial data
● Terraforming
● Water
● Flags and scales: trees, grass, excluding buildings…

B) Make a terrain system that scales

Runtime
augmentations

Pre-computed
augmentations

Iteration time Instantly applied on the
entire Earth

Heavy processes running in
the cloud

Available data Limited: only the currently
streamed data available

Can access any tile at any
LOD

Compute power and
memory limits

Limited by the client
hardware

Limited by resources

Examples - Grass detection
- Detail maps
- Precise trees positioning

- Color correction
- Vegetation detection
- Image quality evaluation

Augmentation types

Scale with hardware specs

● Quadtree: good fit for scaling with hardware specs

● Just scale the LoD choice factor

● Using a fixed LoD for some data types is problematic in theory
● E.g. trees available at LoD 13 & 15

● Uneven distribution (Mercator projection)

● Not that much an issue in practice

● Varying network bandwidth

● Dynamically measure bandwidth

● Continuously correct requested LoDs

Handling large coordinates

● CPU node position
● Float 32 bits → Double 64 bits

● GPU:
● Inverted depth buffer

● Introduce « anchor space »

Anchor space

● Origin = camera position

● Rotation:
● Y = Earth surface normal

● X and Z
● Computed from previous frame

● Drift over time

● Before: localPos → worldPos → viewPos → projPos

● After: localPos → anchorPos → viewPos → projPos

23 M generated trees

6.3 M trees in frustum

Trees!

Trees
● Per-tile vegetation marker (LoD 13 & 15)

● Per-tile trees mask
● Pre-computed in Azure using machine learning

● Use Halton sampling
● Always uniform, whatever the chosen density
● Density can be controlled at draw time

● Tree types determined using rules based on biome data

● CPU: sample DEM ⇒ set correct height

● CPU: sample aerial ⇒ set matching tree color
⇒ Trees fade out naturally to the aerial!

Trees
● Rendering
● Display millions of trees ⇒ 3D imposters [2]

● 1 draw call per tree specie per tile

● Vertex buffer: 1 vertex per tree

● TIN
● Baked-in TIN trees not good enough

● Flattening at runtime problematic (LoD

popping)

⇒ Draw imposters on top of TIN geometry

TIN area: Trees OFF

TIN area: Trees ON

DEM+aerials area: Trees OFF

DEM+aerials area: Trees ON

Shadows

● Combination of techniques:
● Cascaded shadow maps
● First slice fits the plane/cockpit

● Limited in distance

● Big terrain shadows (mountains…)
● Top-down render of the terrain to a heightmap

● Ray-marching inside the heightmap

● 300 km x 300 km

● Small shadows on screen
● Screen space ray-marched shadows

Ray-marched heightmap
shadows OFF

Ray-marched heightmap
shadows ON

Screen-space ray-marched
shadows OFF

Screen-space ray-marched
shadows ON

Ground details

●Detail maps
● Near, mid and far
● Dirt / Asphalt / Grass
● Runtime detection in pixel

shader

●Grass
● Spawned according to

surface type
● Colored with aerial

Detail maps OFF
Grass OFF

Detail maps ON
Grass OFF

Detail maps ON
Grass ON

Detail maps OFF
Grass OFF

Detail maps ON
Grass OFF

Detail maps ON
Grass ON

No augmentations

Buildings

Buildings + Trees

Buildings + Trees + GameRender

Buildings + Trees + GameRender
+ Detail maps

Buildings + Trees + GameRender
+ Detail maps + Grass

We are hiring ☺

THANKS

●Thank you for listening

●A big thank you to all the Flight Simulator team
● Special thanks to the Asobo Engine team, you rock! ❤️

●Questions?

References

[1] https://docs.microsoft.com/en-us/bingmaps/articles/bing-

maps-tile-system

[2] https://shaderbits.com/blog/octahedral-impostors

